Ground-Target Tracking in Multiple Cameras Using Collaborative Particle Filters and Principal Axis-Based Integration

نویسندگان

  • Wei Du
  • Jean-Bernard Hayet
  • Jacques G. Verly
  • Justus H. Piater
چکیده

This paper presents a novel approach to tracking ground targets in multiple cameras. A target is tracked not only in each camera but also in the ground plane by individual particle filters. These particle filters collaborate in two different ways. First, the particle filters in each camera pass messages to those in the ground plane where the multi-camera information is integrated by intersecting the targets’ principal axes. This largely relaxes the dependence on precise foot positions when mapping targets from images to the ground plane using homographies. Second, the fusion results in the ground plane are then incorporated by each camera as boosted proposal functions. A mixture proposal function is composed for each tracker in a camera by combining an independent transition kernel and the boosted proposal function. The general framework of our approach allows us to track individual targets distributively and independently, which is of potential use in case that we are only interested in the trajectories of a few key targets and that we cannot track all the targets in the scene simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-camera People Tracking by Collaborative Particle Filters and Principal Axis-Based Integration

This paper presents a novel approach to tracking people in multiple cameras. A target is tracked not only in each camera but also in the ground plane by individual particle filters. These particle filters collaborate in two different ways. First, the particle filters in each camera pass messages to those in the ground plane where the multi-camera information is integrated by intersecting the ta...

متن کامل

Multiple Persons Tracking with Data Fusion of Multiple Cameras and Floor Sensors Using Particle Filters

Successful multi-target tracking requires locating the targets and labeling their identities. For the multi-target tracking systems, the latter becomes more challenging when the targets frequently interact with each other. In this paper, we propose a method for multiple persons tracking using multiple cameras and floor sensors. Our method estimates 3D positions of human body and head, and label...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Interacting Multiple Model Particle-type Filtering Approaches to Ground Target Tracking

Ground maneuvering target tracking is a class of nonlinear and/or no-Gaussian filtering problem. A new interacting multiple model unscented particle filter (IMMUPF) is presented to deal with the problem. A bank of unscented particle filters is used in the interacting multiple model (IMM) framework for updating the state of moving target. To validate the algorithm, two groups of multiple model f...

متن کامل

Multi-Camera Target Tracking in Blind Regions of Cameras with Non-overlapping Fields of View

In this paper, we propose a real time system for tracking targets across blind regions of multiple cameras with non-overlapping fields of views (FOVs) using camera topology, and targets’ motion and shape information. Kalman filters are used to robustly track each target’s shape and motion in each camera view and the common ground plane view composed of all camera views. The target’s track in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IPSJ Trans. Computer Vision and Applications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009